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1. Introduction

To understand the structural basis of biology, it is
necessary to understand the transformations of macro-
molecules during functional cycles. These changes can
involve large-scale conformational transformations, changes
in the state of ligation or association, changes in dynamics,
or alterations in covalent bond structure. X-ray crystal-
lography and NMR spectroscopy have been invaluable for
the description of the structures of proteins and their

transformations. However, proteins are far from being the
static structures used to represent them. Deeper understanding
of key functional properties of proteins, such as allostery,
catalysis, and the roles of proteins in signal and energy
transduction, will require improved understanding of the
conformational excursions around the state represented by
the high-resolution structure.

Proteins, even under native conditions, exist as ensembles
of related, interconverting, transient microstates that, as an
average, describe the canonical high-resolution structures
observed by crystallography or NMR spectroscopy. The view
of the native state as a set of structural microstates raises
the possibility that many of the physical and functional
properties of proteins (e.g., stability, solubility, their ability
to recognize, bind, and respond to the binding of ligands)
are influenced significantly by the same structural fluctua-
tions that give rise to the ensemble. The observed biological
activity of proteins represents the energy-weighted contribu-
tions of the component microstates of the ensemble. The next
step toward elucidation of the structural basis of biological
organization will require understanding the structural char-
acter and energetics of the constituent microstates of protein
ensembles.

Here we review the background, the physical basis, and
the experimental validation of a structural thermodynamic
model of the protein ensemble, known as COREX. Over the
past decade, this simple model has been shown to reproduce
a surprising number of apparently disparate biophysical
and functional properties of proteins. It has afforded
novel interpretations of solution properties and suggested
experiments to test previously unrecognized roles of
local conformational fluctuations on functional aspects of
proteins.

In light of the apparent simplicity of the model, it is
important to explore the implications of its success at
explaining a range of physical observations. More important
than what experimental tests have revealed about the
accuracy of COREX is what these tests suggest about the
behavior of proteins in general and about the robustness of
the observed behavior. The underpinnings of the COREX
algorithm are rather unique; they were adopted for their
simplicity. Here these underpinnings are contrasted with
alternative approaches for modeling conformational fluctua-
tions in proteins. The self-consistent view of proteins that is
emerging from studies with the COREX model suggests that
without detailed understanding of the structural and energetic
character of the ensemble, it will not be possible to further
dissect the relationship between structure and function of
proteins.
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2. The Protein Ensemble sFraming the Problem

2.1. The Energy Landscape of Proteins
A powerful strategy for elucidating the physical and

structural basis of function of biological macromolecules
consists of correlating the observed changes in energy for a
particular biological process with the structural changes
observed using high-resolution X-ray crystallography or
NMR spectroscopy. Thermodynamic information is an
essential element in the dissection of the structural basis of
biological function. Specifically, the Gibbs free energy (∆G)
is useful to describe quantitatively the probability of each
state and of transitions between them, whereas the enthalpy
(∆H) and entropy (∆S) functions are useful because they

inform on the noncovalent forces stabilizing the different
structural states.

The native state of each protein is usually considered as a
single species represented by the high-resolution structure.
Hydrogen exchange and NMR relaxation measurements
convey a much different picture of proteins, requiring that
the native state be viewed as an ensemble of interconverting
conformational states.1-11 This is depicted schematically in
Figure 1, which shows a hypothetical energy landscape of a
protein with the high-resolution structure represented as the
lowest energy state.12 In this figure, the landscape that is
represented is rugged, with various local minima, presumably
representing states with non-native structure occupying basins
that could influence the kinetics of processes such as folding,
ligand binding, or interactions with other proteins. It is of
considerable interest to know what the different conforma-
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tional microstates accessible to proteins are and how these
alternative conformations affect their solution and functional
properties. In other words, what and where are the minima
in the energy landscape? This is equivalent to knowing the
structures and the energies of the microstates that are
populated under native conditions. It is also of interest to
elucidate how environmental variables such as pH, temper-
ature, salts, mutation, and additives such as denaturants,
osmolytes, and ligands affect the structural character and
distributions of microstates in an ensemble. The COREX
model can be used to address these questions.

2.2. The Ergodic Hypothesis

2.2.1. Temporal vs Instantaneous Representations of
Ensembles

Investigations of the conformational heterogeneity in
proteins based on high-resolution structures can be grouped
into two approaches: (i) temporal representations that
consider the evolution of a single molecule over a trajectory
in time and (ii) instantaneous or ensemble representations
that consider the distribution of microstates at any given
instant (see Figure 2). The ergodic hypothesis states that these
two approaches can provide equivalent information. In
practice, accurate modeling of protein fluctuations is difficult
to achieve; protein molecules contain thousands of atoms
that can be arranged in an almost infinite number of ways.
Therefore, explicit consideration of all conformational
permutations is computationally intractable. The inherent
inability of any method to enumerate all possible microstates
of a system impacts temporal and ensemble representations
of proteins in different ways.

The most common method for exploring the temporal
representation of the protein ensemble involves use of
molecular dynamics (MD) simulation.13-17 This atomistic
approach is particularly useful when information about
changes in state, such as the identification of plausible
transition states, is of interest. One drawback of standard

MD methods is that despite the substantial computer power
available today, simulations for proteins of even modest size
(200 amino acids) are usually limited to the tens of
nanoseconds time regime. The conformational excursions that
are sampled in a standard MD simulation are generally the
high frequency fluctuations, leaving a large section of
conformational space unexplored. Methods such as replica
exchange MD have been devised recently for improved
conformational sampling.18-20 Although information about
the evolution of the system as a function of time is lost in
these types of simulations, a larger conformational space is
searched by means of Monte Carlo guided cycles of heating
and annealing.21 Notwithstanding these improvements, replica
exchange methods are not yet applicable to large proteins,
and it is challenging to derive from these calculations realistic
probabilities for the species that are sampled.

All-atom simulations are not yet useful to routinely access
the fluctuations and conformational states that are sampled
in the relatively slow time scales (microseconds and slower)
relevant for most biological equilibrium thermodynamic
processes. Coarse-grained models aim to cover this gap.
Models such as CR Go, in which attractive forces are
assigned to native contacts and repulsive ones to non-native
contacts, represent a useful alternative.22 Despite the mini-
malist nature of these models, they have been very successful
in elucidating molecular details of the energetics and kinetics
of folding.23-26 An important implication of the success of
these approaches is that they suggest that many seemingly
complex phenomena are actually very robust features of the
ensemble (i.e., they are not particularly sensitive to the
precision of the energy function). This is an important result
that was taken into consideration in the development of the
COREX model described below.

There are other coarse-grained methods useful for the study
of dynamic fluctuations about the native state that bypass
the computational inefficiency of atomic approaches for the
study of large macromolecules. For instance, in the Gaussian
network model, simplified force fields are used to describe
vibrational dynamics.27,28 In these models, the fluctuations
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of residues are assumed to be Gaussian-distributed about their
mean positions and coupled by harmonic potentials. This
approach is particularly appropriate for describing the
collective motions of proteins, and it has been applied
successfully to the study of various equilibrium properties
of proteins governed by fluctuations, such as hydrogen
exchange, crystallographic temperature factors, and NMR
relaxation.27,28

One of the difficulties with all of the above methods for
describing the protein fluctuations is that they do not account
self-consistently for the effects of environmental variables
such as pH, pressure, temperature, salt, mutations, and the
chemical potential of salts, ligands, denaturants, and os-
molytes. These models have not been designed to allow the
calculation of Gibbs free energies of the different microstates
in the ensemble (∆G). Therefore, they cannot be used to
calculate the probabilities of the states. In general, these
methods were not designed to reproduce other thermo-
dynamic variables of the system (e.g.,∆H, ∆S, and∆Cp),
which are the variables that allow the most direct compari-
sons with experimental observations. An ensemble repre-
sentation of proteins that can be connected with equilibrium
thermodynamic properties could offer many advantages,
particularly with regard to interpreting experimental results

or using experimental results to guide in the development
of the model.

In temporal representations of protein fluctuations, the
focus of the calculations is to determine pathways between
alternative conformations. In contrast, the goal of an
instantaneous representation of the ensemble (Figure 2) is
to identify and characterize the most probable states (i.e.,
the minima in the landscape) in the ensemble. For this reason,
in an instantaneous representation of the ensemble, the kinetic
properties of the system are less relevantsonly the states
themselves matter (although see section 4.3). One practical
benefit of the ensemble representation of proteins is that they
avoid the computational burden of calculating energy barriers
between minima; computational resources can be focused
instead on the generation and thermodynamic characterization
of a large number of conformational microstates.

The instantaneous representation of the ensemble described
ahead is fundamentally a structural-thermodynamic method.
Therefore it is well suited for calculation of thermodynamic
observables, making it particularly amenable to testing
directly against experimental comparisons. In this ensemble-
based method, the problem of characterizing the energy
landscape of a protein is reduced to determining the structure
and energy of the low-energy states and their sensitivity to

Figure 2. The ergodic hypothesis. A fundamental postulate of statistical mechanics is that the instantaneous probability distribution of an
ensemble is equivalent to the time average of a single molecule. In practical terms, however, this requires sampling over long time trajectories.
Panel A presents a hypothetical representation of the instantaneous ensemble of a generic protein showing regions that are non-native
(yellow) and native (red) in each state. Panel B shows the temporal representation of a single molecule showing regions with different
probabilities for conformational diversity (red) low; orange) medium; yellow) high). Regions colored orange are those that are either
red or yellow in the different states shown in panel A. Panel C show the energy landscape representation of an ensemble of states (red
points). In the instantaneous ensemble, the pathways between states are not considered. Panel D shows the energy landscape representation
of a single molecule performing a search (red arrows) through conformational space.
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various environmental variables. In principle, these are the
states that will be populated in solution and the ones that
will govern the solution and functional properties of proteins.

2.2.2. Energetics of the Ensemble
Once a particular microstate is identified in an ensemble

representation of the energy landscape, it is possible to
calculate the energetic contribution of that state to the overall
properties of the ensemble. For each microstate, the statistical
weight can be expressed as

whereR is the gas constant,T is absolute temperature, and
∆Gi is the Gibbs free energy of statei. ∆Gi can be further
divided into the component enthalpy (∆Hi), entropy (∆Si),
and heat capacity (∆Cpi) contributions. The assumption of a
temperature-independent∆Cpi and use of a reference tem-
perature (Tref) leads to the familiar Gibbs-Helmholtz expres-
sion:

The importance of eq 1 is that the sum of the statistical
weights of allN microstates in the ensemble corresponds to
the partition function:

from which all important thermodynamic quantities, in
particular the probability of each state, can be determined:

Equations 1-4 show that the rigorous, formal description
of energies in the context of the ensemble representation is
straightforward. The challenge of this approach is 2-fold.
First, it is necessary to develop a sampling scheme that
sufficiently represents the real protein ensemble. Second, it
is necessary to identify an accurate energy function that
enables correlation between energetic and structural informa-
tion. The representation of the conformational landscape for
a hypothetical ensemble in more quantitative terms in Figure
3 illustrates the scope of these challenges (i.e., in terms of
the fraction of the residues in each state that maintain native-
like geometry, see Figure 3).

The hypothetical ensemble representation shown in Figure
3 raises a number of questions and issues. For instance, what
are the structures of the segments of protein with non-native
conformations in the microstates that have a large fraction
of residues in the native geometry (region III)? In other
words, what is the nature of the conformational fluctuations
around the native structure? States with a small fraction of
the residues in the native geometry (region I) can be viewed
as consisting of two groups: (i) extended conformations and
(ii) compact non-native conformations. Are compact non-
native structures required to model the ensemble or are these
rare, high-energy states of no functional relevance whatso-
ever? For the states with intermediate degrees of native
contacts (region II), what is the relative energy of these
states? Does a model that adequately captures the relative

Figure 3. Representations of the ensemble for a hypothetical
protein depicted schematically as a landscape (A), as fraction native
contacts vs free energy (B), and as fraction native contacts vs
probability (C). In Panels A and B, each of the points represents a
state that is color-coded on the basis of its energy; green states are
high-energy, and red states are low-energy, with the distinction
being largely context-dependent. Also shown (B) is a ribbon
representation of one state in the ensemble with∼80% native
contacts (red corresponds to regions of native structure and yellow
corresponds to regions of non-native structure). Panel C shows the
probability distribution (determined from the free energies in panel
B) indicating that for a specific set of conditions, only a subset of
states attain a significant probability. To achieve high probability
for other states in the ensemble, the system must be perturbed (e.g.,
by T, pH, denaturants, osmolytes, ligands, mutation, etc.) in a
manner that preferentially stabilizes other states.

Ki ) e-∆Gi/(RT) (1)

∆Gi(T) ) ∆Hi(Tref) - T∆Si(Tref) + ∆Cpi
[(T - Tref) -

T ln(T/Tref)] (2)

Q ) ∑
i)1

Nstates

Ki (3)

Pi )
Ki

Q
(4)
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energies of native-like (region III) and denatured-like (region
I) states also predict high energies for states with intermediate
degrees of native structure (region II)?

2.2.3. Response of the Ensemble to Perturbations
Perhaps the most attractive feature of an ensemble

representation of a protein is that it can provide the
opportunity to quantitatively determine the statistical weight
of each state under a variety of different environmental
conditions. The partition function and the probabilities of
the microstates are all dependent on environmental factors
and conditions. For this reason, it is possible to directly
access a variety of fundamental features of the protein
ensemble and of protein function. The dependence of the
probabilities of microstates on environmental conditions also
enables direct experimental tests of an ensemble approach.
For example, consider the case where the effects of pH and
denaturant are included. The partition function becomes

In this equation,Ki refers to the intrinsic stability, andKa,j,den

and Ka,j,H+ are site-specific denaturant and H+ binding
constants. As eq 5 reveals, the probability of each microstate
in the ensemble is modulated by changes in the various
intensive parameters in the system, and the effects are
relatively straightforward to consider in the context of an
ensemble representation. In this way, a modeling strategy
based on an instantaneous representation of the ensemble
can provide an avenue for explicitly considering the depen-
dence of the entire protein ensemble on temperature, pH,
denaturant, ligands, mutation, etc.

3. Modeling the Protein Ensemble

3.1. Overview
It is widely acknowledged that the folds of proteins are

over-determined; the primary sequence of a protein can be
modified extensively without altering the fold. This observa-
tion has two important corollaries: (1) most of the mi-
crostates that are populated in the ensemble in solution will
reflect the consequences of fluctuations about the mean state
represented by the high-resolution structure; (2) compact
states with a different fold are rarely populated, if at all. It
follows from these corollaries that the high-resolution native
structures of proteins can be used to enumerate the vast
majority of the relevant microstates of an ensemble. It is of
considerable interest to determine the stability of the different
microstates in the ensemble and to characterize the extent
to which native geometry is maintained.

Generating ensembles that represent structural deviations
from the canonical structure has been the focus of significant
recent efforts. MD methods have been combined with various
types of experimental constraints such as hydrogen exchange
protection factors and NMR-derived structural and dynamic
parameters, to compute theoretical ensembles.29,30 These
methods have been shown to be self-consistent by demon-
stration that they can successfully recapitulate the parameters
used to compute the ensemble. However, it is not yet known
whether a structural ensemble trained from one type of
experimental data can be used to predict other types of data

(i.e., where results of the type that are predicted are not
included in the training set). Notwithstanding these uncer-
tainties, hybrid experimental-computational methods of this
type will be of significant value in interpreting the origins
of experimental difference.

Although it is clear that the conformational fluctuations
around the canonical structure of a protein are native-like,
the nature of these fluctuations is not known. For instance,
are fluctuations well described by one or a few distinct
conformational variants? A recent experimental result appears
to illuminate the character of conformational fluctuations that
exist under native conditions. In recent work by Wand and
colleagues,31 NMR of proteins encapsulated in reverse
micelles was used to examine the protein ensemble under
conditions that favor cold denaturation. A striking conclusion
of those studies is that the protein ensemble appears to be
dominated by states that have adual structural character.
This means that for a particular state, some regions retain a
remarkable degree of native-like character, while other
regions are best characterized as occupyingmanyalternative
conformational states. In other words, these results appear
to point toward a model that resembles the local order-to-
disorder (or local unfolding) transitions that have been
described previously.32

The experimental results obtained from these studies raise
an important issue that must be addressed if the thermo-
dynamic consequences of these types of states are to be
adequately modeled. If the energy is distributed among a
large number of conformational states for a particular region
(i.e., if the local unfolding model of fluctuations is indeed
accurate), how can this behavior be modeled in a computa-
tionally tractable and thermodynamically rigorous way? One
approach is to avoid describing the unfolded regions of
proteins in structural terms. Instead, unfolded regions can
be described using strictly thermodynamic terms. This is
exactly the strategy employed by the COREX algorithm,
which is referred to as a hybrid structural-thermodynamic
approach. It is considered a hybrid approach because folded
regions are treated in explicit structural terms but unfolded
regions are treated only in thermodynamic terms. This hybrid
character is described in detail in the following sections.

3.2. A Hybrid Structural −Energetic Approach:
The COREX Algorithm

3.2.1. Sampling Conformational Space

Macromolecular equilibria are usually modeled as transi-
tions between fixed macroscopic states. Protein folding, for
example, is usually described as a two-state process,33

wherein the protein fluctuates between two macroscopic
states, the native state and the unfolded (or denatured) state.
Although this is a reasonable approximation of protein
unfolding within the transition region,33 it ignores other
equilibria that exist, for example, under strongly native
conditions. Under these conditions, the unfolded state is
highly unstable, but the protein undergoes conformational
excursions about the high-resolution structure. As noted,
these conformational excursions can be detected by hydrogen
exchange and NMR relaxation data.34-54 As the protein is
destabilized and the unfolded state probability begins to
compete with the probability of the fluctuations seen in
hydrogen exchange, the protein behavior becomes more
classically “two-state”. Thus, an accurate model of the protein
equilibrium must be able to account self-consistently for the

Q(T,[den],pH))

∑
i)1

Nstates

Ki∏
j)1

msites

(1 + Ka,j,den[den])∏
j)1

msites

(1 + Ka,j,H+[H+]) (5)
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behavior in each regime, and it should capture the transition
between these regimes.

The COREX algorithm was developed to model the native
state heterogeneity and to connect it quantitatively to the
classic folding/unfolding behavior observed for proteins.34-35

The COREX approach employs a parametrized Gibbs free
energy function (described ahead) to estimate the free energy
of each structural microstate (eq 2) alongside a simple
sampling scheme to generate structural information for a
large number of microstates. To enumerate the microstates
of the ensemble, a crystal structure is used as a template
onto which a partitioning scheme is applied. Figure 4 shows
the partitioning of staphylococcal nuclease (SNase) as an
example. In this example, a folding unit window size of 10
residues is employed. To begin the partitioning, the first 10
residues are assigned to the first folding unit, the second 10
are assigned to the second folding unit, and so on. The
partitioning is then overlaid onto the high-resolution structure
and an ensemble of structures is generated by systematically
assigning each folding unit as either fully folded (native) or

unfolded. Note that this approach is consistent with thedual
structural characterof the microstates (some local regions
being native and others unfolded) that was experimentally
observed by Wand and colleagues.31 For a system withN
folding units, the partitioning strategy produces 2N - 2
partially native states, representing all possible combinations.
To diminish the influence of the location of each partition,
the partition boundaries are systematically varied by sliding
the folding units one residue at a time in the sequence and
repeating the procedure as described.

3.2.2. Modeling Fluctuations

The approach outlined in Figure 4 represents an efficient
and systematic means of distinguishing the regions of
proteins that are treated in the model asnatiVe-like regions
from the regions that are treated asnon-natiVe-like. This
approach produces an ensemble of states that display dual
structural character. The crystal structure can be used to
describe the native-like regions. The question then becomes,
how should the non-native regions be treated? Should
alternative conformations be considered explicitly for each
region? If so, how many? To estimate the magnitude of this
problem, we need only realize that if 10 residues are to be
treated as non-native and each residue has 10 possible
conformations, 1010 different conformations would have to
be consideredsan extremely large number to model explic-
itly. Because fluctuations in multiple regions of the molecule
must also be considered, it becomes clear that exhaustive
structural enumeration of the unfolded segments of proteins
is not a tractable solution.

To avoid the computational intractability of exhaustive
enumeration, as well as the approximation of considering
only a minute fraction of the relevant states, the COREX
approach treats the fluctuations in statistical thermodynamic
rather than structural terms. This is a key aspect of this
approach. With use of Boltzmann’s equation,

whereS is the entropy,Ω is the number of conformations,
and R is the gas constant, it is possible to estimate the
energetic impact of all the conformational variants, provided
an estimate of the number of possible conformational variants
is known or can be calculated. In the context of this ensemble
model, eq 6 corresponds to the conformational entropy (Sconf)
of the protein. Although this approach does not provide
explicit structural details of the alternative conformations, it
does address the thermodynamic impact of theentire
ensemble and is thus rigorous from a statistical thermo-
dynamic standpoint.

3.2.3. Determination of the Energetics of the Ensemble

To determine the relative free energy of each of the
structural microstates created by the partitioning scheme, a
simple deconstruction of eq 2 is employed.55 The approach
is based on the observation that the enthalpy and the heat
capacity of protein unfolding can be related to the difference
in solvent-accessible surface between the crystal structure
and a hypothetically fully extended unfolded state (see Figure
5).56,57

The agreement between the experimental and the calcu-
lated energetics for a wide range of proteins suggests that
the thermodynamics of the partially folded states also
calculated by this approach will provide a reasonable

Figure 4. Limited enumeration of the protein ensemble: (A) The
linear sequence of the protein is partitioned into folding units. (B)
The folding units are applied to the three-dimensional structure,
and all possible combinations of “unfolded” and “folded” states of
each folding unit are created to define the ensemble. (C) End effects
are accommodated by sliding the folding units along the linear
sequence.

S) R ln Ω (6)
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approximation of the actual energetics of the ensemble. Most
importantly, the energetics can be calculated and compared
to experimental results under multiple environmental condi-
tions, thus allowing direct tests of the validity of the
ensemble-based model to study solution and functional
properties of proteins.

The entropy difference between each state and a reference
state can also be calculated for each microstate in the
ensemble from parametrized energetics.56-63 The entropy is
divided into two components, the solvent entropy (∆Ssolv)
and the conformational entropy (∆Sconf):

The ∆Sconf represents thenumber of conformational
variations that a particular energetic state can occupy. The
important feature is that backbone and side chain confor-
mational entropy values for each amino acid have been
determined empirically,59,60 thus providing a means of
quantifying, in statistical thermodynamic terms, the confor-
mational variability in the non-native segments of each state
in the calculated ensemble shown in Figure 6. Although

clearly a coarse approximation of the conformational space
available to a particular protein segment, such an approach
provides an efficient and systematic alternative to exhaustive
enumeration.

Similar to the case of∆H and∆Cp, the solvation entropy,
∆Ssolv, is determined from changes in solvent-accessible
surface area and is calculated from the apolar and polar heat
capacity contributions shown in Figure 5:

Although the surface-area-based energy function described
here is coarse and provides little insight into an atomic level
understanding of the origins of the energies of each state, it
is nonetheless useful and accurate. The accuracy is a direct
consequence of the fact that the energy function is param-
etrized from the thermodynamics of unfolding of real proteins
measured calorimetrically (Figure 5). According to the
experimental data, the changes in the extent of polar and
apolar surface area is a valid metric of the expected
thermodynamics of folding/unfolding, regardless of the
mechanistic origins of the experimental values. In as much
as the unfolding of subdomains or isolated regions of proteins
is thermodynamically similar to the unfolding of an entire
protein, the surface-area-based parametrization should pro-
vide very reasonable estimates of the energetics of each state.

3.2.4. Summary of COREX Capabilities

In applications of the COREX algorithm, more than 106

structural-thermodynamic microstates are routinely studied
(Figure 4). Because the fluctuating regions in each microstate
are treated as local folding/unfolding transitions, these 106

structural microstates account thermodynamically for more
than 10100conformations. Thus, the modeling strategy utilized
by the COREX method represents an efficient and compu-
tationally tractable means of (i) accounting for states with a
high degree of structural dissimilarity, (ii) determining the
energies of each state based on parametrized energetics, and

Figure 5. Parametrization of the heat capacity and enthalpy.
Hatched bars show the calorimetrically obtained changes in heat
capacity and enthalpy of unfolding for a database of proteins of
various sizes. Colored bars represent those values for the heat
capacity and enthalpy that are calculated using the parametric
equations shown at the top of the graphs, which relate each quantity
to the changes in solvent-accessible surface area upon unfolding.

∆Stotal ) ∆Ssolv + ∆Sconf (7)

Figure 6. The COREX ensemble. Red regions in each state are
portions that are treated as native-like. Yellow regions are treated
as denatured-like. However, as indicated in Figure 2, the actual
conformations accessible to the fluctuating regions (shown here
for schematic purposes only) are not modeled explicitly. The
energetic impact of those fluctuations on the free energy of each
state is evaluated using eq 1.

∆Ssolv,tot(T) ) ∆Cpapol
ln(T/385)- ∆Cppol

ln(T/335) (8)
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(iii) estimating the impact of mutations and environmental
perturbations on the energies of each state. Although the
COREX approach has a number of fundamental limitations,
which are discussed below, a significant benefit is that the
approach generates and determines the energetics for an
ensemble of states that spans the entire range of structure,
from the completely folded native structure to the completely
unfolded state. This provides a unique opportunity to unify
quantitatively the description of unfolding with the descrip-
tion of fluctuations.

4. Use of COREX Ensemble to Understand
Solution Properties of Proteins and Biological
Function

The benefit of an equilibrium ensemble model is twofold.
First, the effects of perturbations on each state can be
calculated in a straightforward fashion, as described, for
example, by eq 5. Second, observed equilibrium properties
of the system,〈obs〉, can be calculated as the probability-
weighted contribution of the component states in the
ensemble:

Equation 9 shows that the overall observed properties of an
ensemble (e.g., the fluorescence, proton binding, CD, activity,
etc.) are a consequence of the probability of each state and
the sensitivity of each state to the environmental conditions.
Thus, if the effects of these environmental perturbations are
known for each state, the response of the ensemble can be
calculated. To assess the validity of the COREX-derived
ensemble, several types of perturbations have been studied.

4.1. The Response of the COREX Ensemble to
Perturbations

Recently, we presented two examples of how COREX can
be used to monitor the effects of an environmental perturba-
tion on the protein ensemble.31,64The first study focused on
the effects of pH on the stability of staphylococcal nuclease
(SNase).64 In that study, the effects of protons on the
distribution of microstates in the ensemble were determined
following a simple rule set: (i) ionizable groups in native
regions were assigned the pKa value calculated using standard
continuum electrostatics models; (ii) ionizable groups in non-
native regions or structurally adjacent to non-native regions
were assigned the pKa values of model compounds in water
(i.e., unfolded state pKa values). As a result of this rule set,
each microstate in the ensemble had a unique titration
behavior, and the overall titration behavior of the ensemble
followed eq 9.

The performance of this simple model is noteworthy. As
shown in Figure 7, the redistribution of the ensemble of
SNase conformations in response to proton binding results
in an apparent cooperative pH-induced unfolding at pH≈
3.8, which is in very good agreement with the experimentally
observed pH midpoint of unfolding obtained by monitoring
intrinsic fluorescence. In addition, the experimentally ob-
served cooperativity of the pH-induced transition (∂ ln K/∂
ln [H+] ) ∆ν ) 4.7) is in excellent agreement with the value
of 4.8 determined directly from the calculated ensemble.
Furthermore, the COREX calculations were able to identify

the ionizable groups that are responsible for the acid
unfolding properties of the protein. This reasonable agree-
ment between the COREX calculations and the experiment
suggests that the assumption of “local unfolding” for the non-
native regions inherent to the COREX model is a reasonable
thermodynamic treatment. Similarly, the ability of this simple
model to reproduce the acid unfolding behavior suggests that
the energy function reproduces the Gibbs energies of the
microstates nearly quantitatively.

In another recent study, the effect of temperature on the
ubiquitin ensemble was determined and compared to the
experimentally measured cold denaturation.31 The calcula-
tions qualitatively reproduced the cooperative heat denatur-
ation, the non-cooperative cold denaturation, and the location
of the residual structure that persisted after the cold
denaturation transition. These two studies directly validate
the concept that the component microstates in the native state
ensemble embodied in the COREX model have dual
structural character. In other words, it is thermodynamically
valid to invoke the concept of local unfolding to treat the
non-native segments of proteins.

4.2. Cooperativity and Long-Range
Communication in Proteins

The fact that COREX calculations can reproduce a
disparate range of phenomena (at least qualitatively) suggests
that the physical basis for the behavior can be established
by interrogating the ensemble and identifying the dominant
(i.e., most probable) states. The overall response of the
system will depend on the nature of the perturbation and on
the response of each state. More importantly, coarse repre-
sentations of the ensemble are particularly well suited for
identifying general phenomena. This is perhaps best dem-
onstrated by considering how COREX was able to provide
unique insight into several key aspects of cooperativity and
communication in proteins.65-67 A recent example of this
involves the use of COREX to define the energetic connec-
tivities between the different structural elements of dihy-
drofolate reductase (DHFR) fromEscherichia coli.67 Analysis
of this protein has allowed us to describe two important
aspects of intramolecular communication (see Figure 8).
First, within the protein, pairwise couplings exist that define
the magnitude and extent to which mutational effects
propagate from the point of origin. Second, in addition to
the pairwise energetic coupling between residues, functional
connectivity exists; it is apparent in terms of energetic
coupling between entire functional elements (i.e., binding
sites) and the rest of the protein. Analysis of the energetic
couplings provides access to the thermodynamic domain
structure in DHFR, as well as the susceptibility of the
different regions of the protein to both small-scale (e.g., point
mutations) and large-scale perturbations (e.g., binding ligand).
The results of that analysis point toward a view of allosterism
and signal transduction wherein perturbations do not neces-
sarily propagate through structure via a series of conforma-
tional distortions that extend from one active site to another.
Instead, the observed behavior is a manifestation of the
distribution of states in the ensemble and of how the
distribution is affected by a perturbation such as mutations
or ligand binding. This result and other similar ones31,64-68

reveal that the coarse-level representation of the ensemble
embodied in COREX provides unique and significant insight
about the physical basis for a wide range of complex and
functionally significant properties of proteins.

〈obs〉(T,[lig],pH) ) ∑
i)1

Nstates

obsi * Pi(T,[lig],pH) (9)
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4.3. Kinetics of the Ensemble: Modeling Protein
Folding Mechanisms

Although ensembles are used to represent the conforma-
tional properties of proteins at equilibrium, this does not
preclude their use to describe the kinetics of interconversion
among ensemble substates. The interface between statistical
thermodynamic and kinetic models of protein folding has
been elegantly presented by Zwanzig.69 Zwanzig has shown
that the classical two-state kinetic model of folding is
compatible with an ensemble view of proteins. It should be
noted that many proteins sample highly unfolded members
of their ensemble many times per second or faster via an
apparently two-state kinetic mechanism. The classic two-
state rate equation is

wherePN andPU are the fractional populations of the native
and unfolded subensembles andkf andku represent the rate

constants for folding and unfolding. Following the argument
put forth by Zwanzig, the partitioning of the general protein
ensemble into two (or more) subensembles is not based on
a thermodynamic distinction. Rather, a particular conforma-
tion belongs to whichever subensemble contains other
conformations with which it interconverts more rapidly than
the interconversion between subensembles. Although Zwan-
zig demonstrated that such a scenario can satisfy eq 10 for
an apparently two-state system, the analysis does not preclude
more than two subensembles, which may or may not appear
to be kinetically two-state. Subensembles corresponding to
high-energy intermediates may be kinetically undetectable
but may still interconvert more slowly than do the conforma-
tions within each subensemble. The kinetics of interconver-
sion between subensembles (or equivalently, states) can be
described with the following ordinary differential equation:

which describes the rate of change of the population of any
state a in terms of the sum of all fluxes into (k(bfa)Pb) or

Figure 7. Actual calculated ensembles (∆G vs fraction native) for staphylococcal nuclease (SNase) at (A) pH 7, pH 4, and pH 3, (B)
probability of the different fraction native populations as a function of pH, and (C) experimental pH dependence of the fluorescence of
SNase at 25°C.

dPN

dt
) kfPU - kuPN

PN + PU ) 1 (10)

dPa

dt
) ∑

b

k(bfa)Pb - ∑
b

k(afb)Pa (11)
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out of -(k(afb)Pa) state a, wherek represents the rate
constant for the transition andP represents the time-
dependent instantaneous population. The rate constants must
satisfy detailed balance so that at equilibrium the flux from
state a to state b equals the flux from state b to a:

A description of the interconversion between all states at
equilibrium requires the calculation of the flux between each
state. Some states may not be directly accessible from a given
state, and the rate constants and fluxes between such states
would be zero.

Several theories of protein folding seek to describe the
folding mechanism as a series of kinetic steps involving the
interconversion of discrete states along the folding pathway.
These discrete states can be defined as subensembles of the
complete COREX ensemble using the definition of a
subensemble given above. The B domain of protein A
(BdpA) is a 58 residue three-helix bundle protein whose
COREX ensemble can be subdivided into five kinetically
distinguishable subensembles (see below). According to the

diffusion-collision theory of Karplus and Weaver,70 the
interconversion between these subensembles involves the
formation or dissociation of an interhelical interface, as
depicted in the scheme of Figure 9. A similar theory has
recently been proposed by Dill and co-workers.71 Implicit
in both theories is the assumption that conformations within
a subensemble interconvert much more rapidly than do the
subensembles. For example, the BdpA{12} subensemble
with a native interface between helix 1 and 2 would include
conformations that have frayed helix 1 or 2 but zipping up
of the frayed helix would be very fast relative to either the
dissociation of helix 1 and 2 (a transition to the{} ensemble)
or the docking of helix 3 (a transition to{123}). Likewise,
the {12} subensemble would include conformations with
some residues from helix 3 that are helical but not docked
with helix 1 or 2. The flickering formation and decay of
such short helical segments would be much faster (10-50
ns) than the formation and docking of a helix of sufficient
length (∼60%) to cause a transition to the{123} ensemble.
Note that to represent such helix 3 undocked conformations,
the COREX conformational sampling algorithm had to be
modified to allow native secondary structure without native
tertiary interactions. In this case, these conformations can
be represented by a structure in which helix 3 is translated
away from helices 1 and 2 in the native structure.

When this logic is followed, it is possible to computa-
tionally inspect each member of a complete COREX
ensemble and assign it to a kinetically defined subensemble.
For BdpA, these subensembles are depicted in Figure 10.
The fractional population of each subensemblei is

whereQi is the partition function for subensemblei andQtotal

is the partition function for the complete ensemble. Both
partition functions are calculated using eq 3. With this

Figure 8. Analysis of cooperativity in the protein ensemble and
its relationship to ligand binding. Panel A shows the calculated
energetic connectivity of each residue in DHFR to the folate binding
site (determined by the correlation between the probability that any
specific residue is folded or unfolded and the probability that the
folate binding site residues are also folded). Red corresponds to a
large positive energetic connectivity, blue to the smallest, and purple
to negative energetic connectivity. Panel B shows the high-
resolution structure of DHFR with the van der Waals’ surface of
folate in its binding site. The structure is color coded according to
the magnitude of the energetic connectivities in panel A. The
negative connectivities between the folate site and residues 63-68
are highlighted. Note the absence of a propagation pathway from
the folate site. Reprinted with permission from ref 67. Copyright
2000 National Academy of Sciences, U.S.A.

Pa(eq)k(afb) ) Pb(eq)k(bfa) (12)

Figure 9. Calculated folding/unfolding mechanism of the B domain
of protein A, based on the diffusion-collision model. The five
substates are labeled by the numbers of the helices that form native
interfaces in all members of the associated ensembles. The folding
rate constants (magenta) were calculated using standard diffusion-
collision theory. The reverse rate constants (cyan) are calculated
with eq 12 and populations listed in Table 1. All rate constants are
given in units of s-1. The length of the arrows is proportional to
ln(k).

Pi )
Qi

Qtotal
(13)
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approach, the five subensembles of BdpA have the equilib-
rium populations given in Table 1.

The rate constants for the formation of each subensemble
from its less folded precursors can be calculated using a
variety of approaches, including that of Dill and co-workers,71

that of Munoz and Eaton,72 molecular dynamics,73 or
diffusion-collision theory.70 The latter approach has been
used to calculate the forward rate constants depicted in Figure
9. The reverse rate constants depicted are calculated using
the equilibrium populations from Table 1 and eq 12.

The rate constants in Figure 9 combined with the equi-
librium populations in Table 1 can be used to calculate the
equilibrium fluxes between subensembles. The fluxes for
BdpA are depicted in Figure 11. The flux along a sequential
pathway is the inverse of the sum of the inverse fluxes (by
analogy to the combination of capacitances in an electrical
circuit). Thus, the flux along a path is dominated by the
smallest value, as expected for a rate-limiting step. Even
when two sequential steps have identical fluxes, the total
flux through both steps is half the individual fluxes because
half of the molecules in the intermediate between two steps
return by the route by which they came. The aggregate flux
through parallel pathways is the simple sum of the fluxes
through each pathway. In the case of the fluxes depicted in
Figure 11, the aggregate flux is 5.4%/ms. Note that this flux
is very high and indicates that under native conditions a
molecule of BdpA will sample the fully unfolded state every
∼20 ms. This conclusion is supported by experimentally
measured folding and unfolding rates.74 With this number,
it is possible to calculate the fractional flux through each
parallel pathway, as listed in Table 2.

It is worth noting that the middle pathway in Figures 9
and 11 is predominant not because the forward rate constant
in the first step is significantly faster than that of the other
two pathways but rather because the population of the{23}
intermediate, as predicted by COREX is significantly higher
than those of{12} or {13}. This higher population reduces
the reverse rate constant and makes the forward reaction more
probable, thereby dramatically increasing the flux through
the{23} T {123} step. The high flux of this step corresponds
to a highly frequent sampling (59%/ms) of the{23} ensemble
from the fully folded ensemble, indicating a highly labile
interface between helix 1 and the rest of the protein. In any
case, models developed as described here emphasize the
importance of folding/unfolding reactions even under condi-
tions that strongly favor the native state.

Thus, although the COREX algorithm was originally
developed as a purely thermodynamic tool, it can also be
used to describe the dynamics of a protein folding reaction
at equilibrium. This provides a unique opportunity to connect
the dynamic information with other seemingly disparate
equilibrium processes, as noted above. These types of
connections, in turn, provide unparalleled opportunities to
elucidate the determinants of the observed thermodynamic
and kinetic processes, and most importantly, they provide a
more complete framework for experimentally challenging
the predictions.

5. Concluding Remarks
The experimental tests of the COREX algorithm suggest

that despite its inherent simplicity and approximations, the
model reproduces many seemingly disparate solution proper-
ties of proteins rather well. We interpret this as evidence
that the biophysical and functional behavior of proteins that
we have rationalized on the basis of an ensemble-based
model are governed by robust features of the ensemble. This
is a significant result because it de-emphasizes the importance
of one or a small number of specific interactions in

Figure 10. COREX BdpA subensembles constituting the five
substates depicted in Figure 9. All free energies are relative to the
fully denatured protein. Each conformation is categorized as
described in the text.

Table 1. Equilibrium Populations of the Five Subensembles of
BdpA Depicted in Figure 9

state
number of

conformations
fractional
population

{} 101224 4.3× 10-4

{12} 320 5.7× 10-8

{23} 276 1.8× 10-4

{13} 268 5.8× 10-7

{123} 312 0.9994

Figure 11. Calculated BdpA folding/unfolding fluxes at equilib-
rium based on the folding mechanism depicted in Figure 9. All
fluxes are given in % ms-1. Arrow thickness is proportional to the
logarithm of the flux.

Table 2. Fluxes through the BdpA Folding Pathways

path
flux

(%/ms)
fractional
flux (%)

{} T {12} T {123} 0.06 1.1
{} T {23} T {123} 5.2 96.7
{} T {13} T {123} 0.12 2.2
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determining such seemingly complex behavior as allosterism.
To the contrary, these results highlight the importance of
the protein as a whole. What determines the properties of a
protein, such as whether a perturbation at one site (i.e.,
binding) will affect another site, is the energetic hierarchy
of states in the distribution (i.e., which states are most stable)
and how each state in the distribution is affected by the
perturbation.64,67,75In principle, the distribution of states that
is sufficient to facilitate the selected behavior of each protein
can be achieved through a variety of amino acid sequences.
The fact that the COREX algorithm can capture this behavior
indicates that the interactions themselves are not as important
as the resultant hierarchy that the interactions help to
preserve.64,67 Although this result seems at first glance
paradoxical, it is entirely consistent with the observations
that homologous proteins with low sequence identity have
identical functions. Indeed, it is noteworthy that such a robust
“coding” of biological function, wherein a particular ener-
getic hierarchy can be facilitated through a highly degenerate
sequence space, is an ideal evolutionary strategy for main-
taining function while at the same time allowing for selective
improvement and diversification through random mutagen-
esis.

The ensemble-based model described in this review could
be improved and extended in several ways. In section 4.3
above, for example, we have shown how the manner in which
the microstates are counted could be modified to suit a
specific application. Similarly, in some cases it might be
necessary to account for contributions made by alternative
folds to the properties of the ensemble. The parametrized
energy function could also be fine-tuned, for example, by
applying even more rigorous approaches to the manner in
which electrostatic effects, described in section 4.1, are
computed. A benefit of the relatively simple architecture of
the COREX model is that these extensions and modifications
of the ensemble-based approach are relatively straightforward
and can be guided by direct comparisons with experimental
data.76
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